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Abstract— In this paper we study the one–sided Hausdorff 
distance between the shifted Heaviside function and some 
generic growth function such as Turner–Bradley–Kirk–Pruitt 
function. Numerical examples are presented using CAS 
MATHEMATICA.  

Keywords— Sigmoid functions, Heaviside function, Turner–

Bradley–Kirk–Pruitt generic function, Hausdorff distance, 

Upper and lower bounds 

 

I. INTRODUCTION 

We study the one–sided Hausdorff approximation of 

the shifted Heaviside function by Turner–Bradley–Kirk–Pruitt 

generic growth function. Precise upper and lower bounds for 

the Hausdorff distance have been obtained. 

The estimates obtained give more insight on the lag 

phase, growth phase and plateau phase in the growth process 

[1]–[4]. 

In [5] we study the uniform approximation of the cut 

function by smooth sigmoidal generic logistic functions such 

as Nelder [6] and Turner–Blumenstein–Sebaugh [7]. 

 

II. THE SHIFTED HEAVISIDE FUNCTION AND THE TURNER–

BRADLEY–KIRK–PRUITT GENERIC GROWTH FUNCTION 

 

Definition.  The shifted Heaviside function ( )
t

h t


 is 

defined for t  R  by 
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Definition.  The Hausdorff distance ( , )f g  

between two interval functions ,f g  on   R , is the 

distance between their completed graphs ( )F f  and ( )F g  

considered as closed subsets of   R  [8], [9], [10]. 

More precisely, we have  
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  wherein | | . | |  is any norm in 
2

R , e. g. the maximum norm 

|| ( , ) ||= m ax{ | |, | |}t x t x ; hence the distance between the 

points = ( , )
A A

A t x , = ( , )
B B

B t x  in 
2

R  is 

| | | |= ( | |, | |)
A B A B

A B m a x t t x x   . 

 

In 1976 Turner, Bradley, Kirk and Pruitt [11] 

proposed a modified Verhulst logistic equation [12], [29] 

which they termed the generic growth function. 

This has the form  

1 (1 )
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 where ,   are positive parameters and 
1

< 1


 . 

This has the solution [13]:  
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 Note that the population at the inflection point, is 

given by  
1

= 1 .
1

in flec tio n
N K
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The condition 
1

< 1


  ensures that 

> 0
in f le c tio n

N . 

 

Special case. Let = 1 , = 1K r  and  

1

1
= ( 1 ) ; = 1 .

0
A B
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Then we obtain the special Turner–Bradley–Kirk–Pruitt 

function:  
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The function defined by (6) has an inflection at point 

( , ( ) )t N t
 

. Let us choose (see (5)) 
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 On the other hand,  
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and we find  
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III. APPROXIMATION OF THE SHIFTED HEAVISIDE FUNCTION 

BY TURNER–BRADLEY–KIRK–PRUITT GENERIC GROWTH 

FUNCTION (6) 

We next focus on the one-sided Hausdorff 

approximation d  of the function ( )
t

h t


 by generic growth 

function (6). 

Let  
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The following Theorem gives upper and lower 

bounds for d  

 

Theorem 3.1  For the Hausdorff distance d  

between the function ( )
t

h t


 and the function (6) the following 

inequalities hold for 
1

(2 1 ) 1
>

( 1 )2 2

A
 


 






:  

1

1

1

1
= < <

(2 1 )
3 1

(1 )2

(2 1 )
ln 3 1

(1 )2
= .

(2 1 )
3 1

(1 )2

l

r

d d

A

A

d

A

 



 



 



 

 

 







 
 

 

  
  

  

 
 

 

 (10) 

 

 

Proof. We need to express d  in terms of   and  . 

The Hausdorff distance d  satisfies the relation 
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Consider the function ( ) = .G d a b d  

 By means of Taylor expansion we obtain  
2

( ) ( ) = ( ) .G d F d O d  

Hence ( )G d  approximates ( )F d  with 0d   as 
2

( )O d  

(see Fig. 3). 

 

Further, for 
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 we have  
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This completes the proof of the theorem. 
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Figure  1: Approximation of the Heaviside function (green) 

with jump at point = 1 .2 4 6 0 4t


 by the function ( )N t  (red) 

with = 1K , = 1r , = 3 , = 1 .1 6 6 6 7 , 0 = 0 .01N , 

Hausdorff distance = 0.315908d . 

   

 

   
  

Figure  2: Approximation of the Heaviside function (green) 

with jump at point = 0 .6 7 5 2 3 2t


 by the function ( )N t  

(red) with = 1K , = 1r , = 5 , = 1 .1 6 2 5 , 

0 = 0 .01N , Hausdorff distance = 0.274188d . 

 

 

   
Figure  3: The functions ( )F d  and ( )G d  for = 1K , 

= 1r , = 3 , = 1 .1 6 6 6 7 , 0 = 0 .01N . 

Some comparison of the sigmoidal curve (6) and 

Verhulst logistic function  

( )

1
( ) =

1
k t t

V t

e


 


 

is plotted in Fig. 4. 

For some approximation, computational and 

modelling aspects, see [14]–[26]. 

 

 

 

  
  

Figure  4: Approximation of the Heaviside function (thick) 

with jump at point = 1 .2 4 6 0 4t


 by the function ( )N t  (red) 

with = 1K , = 1r , = 3 , = 1 .1 6 6 6 7 , 0 = 0 .01N  

and by shifted Verhulst logistic function (dashed) with 

= 2.6k . 

 

Remark 1. Blumberg [27] introduced the so called 

the hyper–logistic function:  

= 1 .
d N N

rN
d t K



  
 

 

 (12) 

 The equation (12) is consistent with the Turner–Bradley–

Kirk–Pruitt generic growth function (3) when = 1 , 

= 2   and < 2 . Eq. (12) can be re–formulated as the 

integral equation (see, also [13])  
( )

1

0

(1 ) = .

N t

K

N

K

x x d x rK t
    

  

 

Remark 2. The growth rate modelled by Gompertz 

function [28] is given by:  

= ln .
d N K

rN
d t N



  
  
  

 (13) 

 

With > 0 , 1  , this special case is more usually 

known as the hyper–Gompertz [11], generalized ecological 

growth function, or simply generalized Gompertz function. 

Equation (13) has the solution  
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Based on the methodology proposed in the present 

note, the reader may formulate the corresponding 

approximation problems on his/her own. 
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