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 Abstract— This  study  presents  a  nonlinear  mathematical face  by  oncolytic  virotherapy  is  weather  the  immune  system model  describing  the  interaction  of  uninfected  cells,  infected of  the  body  maybe  eliminate  the  oncolytic  virus  before  they cells, viral particles, immune cells (T-cells), and chemotherapy. 

can  work  Sufficiently,  this  interference  of  the  immunity The  analytical  results  establish  that  the  system  preserves potential reduced treatment effectiveness. As a results, the use biological feasibility, with all state variables remaining positive of  oncolytic  viruses  alone  usually  doesn’t  shrink  existing and bounded over time. Numerical simulations are carried out tumor  cells  [3].  Therefore  the  used  of  different  traditional using  biologically  motivated  parameters,  and  the  results methods  with  oncolytic  virotherapy   like  chemotherapy provide  insights  into  the  balance  between  viral  replication, or radiotherapy  has  gained  attention  to  be  promising  and immune  clearance,  and  chemotherapy  dynamics.  The  findings killing tumor cells more adequately [2, 7]. 

highlight the critical role of immune T-cells and chemotherapy In  this  study,  we  examine  the  combined  effects  of factors  in  shaping  the  infection  outcome  and  suggest  possible chemotherapy, virotherapy, and immune system activation on directions  for  improving  therapeutic  strategies  through tumor  dynamics  [12,  13].  By  integrating  these  treatment mathematical analysis. 

modalities, our goal is to better understand how they influence outcomes  when  used  together  [4].  We  then  apply  numerical 
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approximations of tumor response. 

dynamical systems.   

The  rest  of  the  paper  is  organized  as  follows:  Section  2 

I. 

INTRODUCTION 

provides a brief overview of tumor growth models. Section 3 

explores  the  mathematical  model  of  tumor  growth  Section  4 

Cancer remains one of the leading causes of death worldwide, describes the stability of the proposed model. Finally, Section with  more  than  10  million  case  reported  each  year  [1]. 

5 summarizes findings and discusses possible future research. 

Researchers  developing  alleviative  treatments  for  this disease but the work in this area is slow because its show a extremely II. 

MATHEMATICAL MODEL OVERVIEW 

difficult,  multidisciplinary  problem  requiring  wide  research We  investigated  chemotherapy,  logistic  growth  [6,  8],  and and  creativity  [2].  Oncolytic  virotherapy  is  an  developing introducing  some  modification  in  the  mathematical  model cancer  treatment  that  uses  virus  duplication  to  abolish proposed  in  [8].  In  the  existing  model  kim  et  al.[8],  use specifically  cancer cells without any harm to normal cells and experimental  data  to  fit  parameter  values  to  their  suggested these viruses have shown efficacy in clinical trial [3,4]. These model,  and  then  vary  treatment  strategies  to  determine  the competent  and  specific  modified  viruses  which  spell  tumor effects  of  numerous  dosage,  treatment  plans,  and  targeted cells  but  not  normal  cells,  that  have  been  made  with viruses have on the short-term (60 days) behavior of the tumor progresses in the ground of genetic engineering [5]. 

cell populations. The authors conclude that the most important Oncolytic viruses are investigated to use immunotherapy as a factors in controlling short-term tumor growth are the immune agents  for  cancer  treatment  to  enhance  body  immunity. 

response and the burst size of virous [5, 15] 

Virotherapy  is  one  of  the  modern  approach  that  are  use  the ability  of  virus  to  destroy  tumor  cells  to  drive  an  antitumor The  progression  is  exponential  for  tumor  cells  in  Kim  et  al. 

immune  response  [6,  15].  This  immune  response  recognize 

[8], as the information comes from experimental data. Hence, cancer  cells  as  a  threat,  and  trigger  that  built-in  self-destruct due to ethical care these models do not get the extreme growth mechanism in  the cancer  cells. While this  current  approaches of  tumor  volume  as  saw  in  logistic  growth.  However,  in  a have  been  established  to  max  this  immunotherapeutic diversity  of  models  for  tumor  growth  can  also  be  reprsented potential  over  the  accumulation  of  immunostimulatory by Gompertzian [4, 9], and bertalanffy [10, 14] models, these cytokines  to  viral  genes  or  mutual  injections  of  viruses  and models  are  popular  for modeling in  tumor growth  because of immune cells [1]. However, there are quiet certain challenges Authors retain all ©  copyrights 2025 IJEW. This is an open access article distributed under the Creative Commons Attribution License,  which  permits  unrestricted  use,  distribution,  and  reproduction  in  any  medium,  provided  the  original  work  is  properly cited. 

mimic  real  biological  processes  [7,  11]  Built  on  the  related BOUNDEDNESS 

biological suitable, the growth law of tumor cells is considered 

  𝑈(𝑡)  Satisfies 𝑈˙ ≤ 𝑟𝑈(1 − 𝑈/𝑘) ,  hence 𝑈(𝑡) ≤

to be logistic growth [14, 15] giving the connections between max{𝑈(0), 𝑘}

tumor  cells,  drug,  virous  and  the  immune  cells  (T-cells),  and 

. 

the model is express as the following system of six differential 

  𝑇(𝑡) Solves  a  linear  ODE,  so𝐸(𝑡) ≤ max{𝑇(0), 𝜙𝐼/

equations,  where  𝑈, 𝐼, 𝑉, 𝐶 ,  and  𝑇  characterize  uninfected 𝛿𝑇}. 

tumor  cells,  infected  tumor  cells,  virotherapy,  chemotherapy, and T-cells respectively [8]. 

  For 𝐶(𝑡),  the  scalar  equation  admits  an  equilibrium 𝑔ℎ

𝐶∗ =

2

(if 

ℎ1 > 𝑔

), 

giving 

𝐶(𝑡) ≤

𝐝𝐯

ℎ1−𝑔



= 𝜶 + 𝝎

max{𝐶(0), 𝐶∗}

𝐝𝐭

𝑰 − 𝜹𝑽𝑽                                                     (1) 

. 

𝐝𝐈

𝜷

  For (𝑉, 𝐼), using 𝜔

= 𝑽𝑼 − 𝜸

𝐼(𝐼) ≤ 𝑐𝐼 and 𝑈 ≤ 𝑘, we obtain the 

𝐝𝐭

𝑵

𝑰𝑰𝑻 − 𝜹𝑰𝑰 − 𝜼𝑰𝑰𝑪                                  (2) comparison system 

𝒅𝑼

𝑼

𝜷

𝛽𝑘

= 𝒓𝑼 (𝟏 − ) − 𝑽𝑼 − 𝜸

𝑉˙ ≤ 𝛼 + 𝑐𝐼 − 𝛿

𝑉 − 𝛿

𝒅𝒕

𝒌

𝑵

𝑼𝑼𝑻 − 𝜼𝑼𝑼𝑪               (3)  

𝑉𝑉, 𝐼˙ ≤ 𝑁

𝐼𝐼 

𝐝𝐂

𝒉

𝛽𝑘

= 𝒈 − 𝟏𝑪                                                               (4) If 𝛿𝑉𝛿𝐼 > 𝑐

, then ( 𝑉, 𝐼 ) are uniformly bounded. 

𝐝𝐭

𝒉𝟐+𝑪

𝑁

Hence,  all  variables  remain  positive  and  bounded,  and 𝐝𝐓 = 𝝓

5

𝐝𝐭

𝑰 − 𝜹𝑻𝑻                                                              (5) solutions lie in a compact, positively invariant region Ω ⊂ ℝ+. 

Here,  we  use 𝛼 is  the  injection  rate  of  virous, 𝜔

IV.  STABILITY ANALYSIS OF THE EQUILIBRIUM POINT 

𝐼 to  represent 

virous  burst  size,  𝛿𝐼  represent  infected  tumor  lysis  rate,  𝛿𝑉 

The analysis of the mathematical model (1) since a qualitative represent  natural  death  of  virous.  The  injected  drug  is insight  initiates  with  finding  the  system's  equilibrium  points. 

ℎ

represent  by  𝑔  and  saturation  rate  of  1𝐶 ,  where  ℎ

To catch the equilibrium points of the system, we recognized: ℎ

1  is  the 

2+𝐶

extreme  rate  of  drug  absorption  and ℎ

𝒅𝑽

𝒅𝑼

𝒅𝑰

𝒅𝑪

𝒅𝑻

2 is  drug  concentration 

=  

=  

=  

=  

= 𝟎. 



drug  use  rate  which  is  half  of  ℎ1 .  The  logistic  growth  of 𝒅𝒕

𝒅𝒕

𝒅𝒕

𝒅𝒕

𝒅𝒕

uninfected  tumor  volume  is  represent  by  𝑟, 𝛾𝐼, 𝛾𝑈  represent 𝟎 = 𝜶 + 𝝎

death  of  infected  and  uninfected  tumor  cells  due  to  T-cells 𝑰 − 𝜹𝑽𝑽                                                              (6) respectively, 𝜂𝐼, 𝜂𝑈 represent expiry of infected and uninfected 𝜷

𝟎 = 𝑽𝑼 − 𝜸

tumor  cells  due  to  drug  respectively,  and 𝛽 characterize  the 𝑵

𝑰𝑰𝑻 − 𝜹𝑰𝑰 − 𝜼𝑰𝑰𝑪                                          (7) proportion  of  uninfected  cells  becoming  infected  due  to 𝑼

𝜷

virous.  The  activation  of  T-cells  is  represent  by  𝜙

𝟎 = 𝒓𝑼 (𝟏 − ) − 𝑽𝑼 − 𝜸

𝐼  while, 

𝒌

𝑵

𝑼𝑼𝑻 − 𝜼𝑼𝑼𝑪                         (8) decay rate is represent by 𝛿𝑇. 

𝒉

𝟎 = 𝒈 − 𝟏𝑪                                                                        (9) 𝒉

III. 

𝟐+𝑪

ANALYSIS 

In  this  section,  we  check  the  positivity,  Boundedness,  and 𝟎 = 𝝓𝑰 − 𝜹𝑻𝑻                                                                    (10) stability behavior of steady state system: and solving the system (6-10) we get following equilibrium BONDEDNESS AND POSITIVITY 

points 

We  now  prove  the  positivity  and  boundedness  of  each 𝑬 = (𝑽∗, 𝑼∗, 𝑰∗, 𝑪∗, 𝑻∗, 𝑨∗)



variable of the model (1-5). 

Where 

POSITIVITY 

𝜙𝐼

For  nonnegative  initial  conditions  and  parameters,  the 𝑇∗ =

(11)  

𝛿

nonnegative orthant is invariant: 

𝑇



𝑔ℎ



2

If 𝑉 = 0, then𝑉˙ = 𝛼 + 𝜔𝐼(𝐼) ≥ 0. 

𝐶∗ =

(12)       

ℎ1 − 𝑔



𝛽



If 𝐼 = 0, then𝐼˙ =

𝑉𝑈 ≥ 0. 

𝑁

𝛼𝛽𝑘

𝛿

1

𝛾

𝛾

𝛽𝑘(ℎ

𝐼∗ =

( 𝑇 +

− 𝑈 − 𝑟𝜙𝐼 ) +

1 − 𝑔) 

  If 𝑈 = 0, then𝑈˙ = 0. 

𝛿𝑉 𝛾𝐼𝜙𝐼

𝛿𝐼

𝑟𝛾𝐼

𝛿𝑇𝑟𝛿𝐼

𝛿𝑉𝜂𝐼𝑟𝑔ℎ2



2



If 𝐶 = 0, then𝐶˙ = 𝑔 ≥ 0. 

2𝛼𝛽𝜔

𝛽𝜔

𝛼𝛾

𝜔

𝛼2𝛽

(𝜔

𝐼

𝐼

𝑈𝜙𝐼

𝐼𝛾𝑈𝜙𝐼

𝐼   +  𝛼𝑟 −

−

−

−

−

) 

𝛿

𝛿

𝛿

𝛿

𝛿



𝑉

𝑉

𝑇

𝑇

𝑉



If 𝑇 = 0, then𝑇˙ = 𝜙𝐼 ≥ 0. 

Thus, 𝑉, 𝐼, 𝑈, 𝐶, 𝑇 remain nonnegative for all𝑡 ≥ 0. 
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𝛽𝜔

1

𝛿

2𝛽

2𝛽

𝛽𝜔

a  standard  numerical  solver  for  systems  of  ordinary 

+ 

𝐼𝑘 ( +  𝑇 − 

−  

−  

𝐼𝛿𝑇  

𝛿

differential  equations  with  biologically  relevant  parameter 𝑉

𝛿𝐼

𝛾𝐼𝜙𝐼

𝑟𝛿𝑉𝛾𝐼𝜙𝐼

𝑟𝛿𝑉𝛿𝐼

𝑟𝛿𝑉𝛾𝐼𝜙𝐼

values.  All  computations  are  performed  with  nonnegative 𝛽𝜔

𝛾

𝛾

𝜂

𝑘𝛼2𝛽2

𝛿

1

− 

𝐼 −  𝑈 −  𝑈𝜙𝐼 −  𝑉 ) −

( 𝑇 +

) 

initial conditions, ensuring consistency with the positivity and 𝑟𝛿

2

𝑉𝛿𝐼

𝛾𝐼𝑟

𝑟𝛿𝑇𝛿𝐼

𝑟𝜂𝐼

𝑟𝛿𝑉

𝛾𝐼𝜙𝐼

𝛿𝐼

boundedness properties established in the previous section. 

𝛼𝛽𝑘𝜂

𝛿

1

𝛽𝜔

𝛿

1

−

𝑉𝑔ℎ2 ( 𝑇 + ) −

𝐼𝑘𝜂𝑉𝑔ℎ2  ( 𝑇 − ) 

The parameter values used in the simulations are summarized 𝛿𝑉𝑟(ℎ1 − 𝑔) 𝛾𝐼𝜙𝐼

𝛿𝐼

𝑟𝛿𝑉(ℎ1 − 𝑔) 𝜂𝐼𝜙𝐼

𝛿𝐼

in  Table  1.  These  values  are  chosen  from  the  literature  or 𝛼𝛽𝑘𝜂

selected to be within biologically realistic ranges. Subsequent 

−

𝑉                                                                            (13) 𝛿

figures present the time evolution of the model variables under 𝑉𝑟𝜂𝐼

these  parameter  settings,  highlighting  the  interplay  between 𝛼 + 𝜔

𝑉∗ =

𝐼                                                                       (14) uninfected cells, infected cells, immune response, and control 𝛿𝑉

mechanisms. 

𝑘𝛽(𝛼 + 𝜔

𝑘𝛾

𝑘𝜂

𝑈∗ = 𝑘 −

𝐼) − 𝑈𝜙𝐼 −

𝑈𝑔ℎ2            (15) 

Table 1: Model parameters used in numerical simulations. 

𝑟𝛿𝑉

𝑟𝛿𝑇

𝑟(ℎ1 − 𝑔)

Parameter 

Description 

Value 

Unit 

Jacobian matrix of the model corresponding to the (11-15) Virus  production  rate  by 

fixed point is: 

𝜔 

50 

day  −1 

𝐼 

−𝜹𝒗

𝟎

𝟎

𝟎

𝟎

𝜷𝑼∗

𝒓 − 𝟐 + 𝑯

𝛿𝑉 

Virus clearance rate 

0.6 

day  −1 



𝟏

𝟎

𝜸𝑼𝑼∗

𝜼𝑼𝑼∗





𝜷(𝜶 + 𝝎

𝜷𝑼∗

𝑰)

𝑯



Growth 

rate 

of 

𝟐

−𝜸𝑰𝑰∗

−𝜼𝑰𝑰∗

R 

0.31 

day  −1 

𝓙



𝜹



uninfected cells 

𝑬 =

𝑽

(𝟏𝟔) 

𝟎

𝟎

𝟎

−𝜹𝑬

𝟎





𝒉𝟑𝒉



𝛽 

Infection rate constant 

0.6 

day  −1 

𝟎

𝟎

𝟎

𝟎

−

𝟑 𝟐𝒈

𝟐

(

(𝒉𝟐

Carrying 

capacity 

of 

𝟏𝒈 − 𝒈𝒉𝟐) )

𝐾 

3 × 109 

Cells 

uninfected cells 

Where 

𝛾𝑈 

Killing of 𝑈 by 𝑇 

2 × 10−6 

day  −1 

𝟐𝜷(𝜶+𝝎

𝟐𝜸

𝟐𝜼

𝜷(𝜶+𝝎

𝜸

𝜼

𝑯

𝑰)

𝑼𝝓𝑰

𝑼𝒈𝒉𝟐

𝑰)

𝑼𝝓𝑰

𝑼𝒈𝒉𝟐

𝟏 = −

−

−

−

−

−



𝒓𝜹𝑽

𝒓𝜹𝑻

𝒓(𝒉𝟏−𝒈)

𝜹𝑽

𝜹𝑬

𝒉𝟏−𝒈

𝜂𝐼 

Killing of 𝐼 by 𝐶 

1 × 10−6 

day  −1 

𝜸

𝜼

𝜂

𝑯

𝑰𝝓𝑰

𝑰𝒈𝒉𝟐

𝑈 

Killing of 𝑈 by 𝐶 

1 × 10−5 

day  −1 

𝟐 = −

− 𝜹



𝜹

𝑰 −

𝑬

𝒉𝟏 − 𝒈

𝑔 

Supply rate of 𝐶 

1.0 

day  −1 

Eigenvalues of matrix (16) are: 

Saturation constant 

ℎ1 

3.0 

day  −1 

𝟐𝜷(𝜶 + 𝝎

𝟐𝜸

𝟐𝜼

(consumption) 

𝝀

𝑰)

𝑼𝝓𝑰

𝑼𝒈𝒉𝟐

𝟏 = −𝜹𝒗, 𝝀𝟐 = 𝒓 − 𝟐 −

−

−

𝒓𝜹𝑽

𝒓𝜹𝑻

𝒓(𝒉𝟏 − 𝒈)

ℎ

𝜷(𝜶 + 𝝎

𝜸

𝜼

2 

Half-saturation constant 

1.0 

day  −1 

−

𝑰) − 𝑼𝝓𝑰 − 𝑼𝒈𝒉𝟐 

𝜹

𝜙

𝑽

𝜹𝑬

𝒉𝟏 − 𝒈

𝐼 

Effector source rate 

2.0 

day  −1 

𝜸

𝜼

𝒉𝟑𝒉

𝝀

𝑰𝝓𝑰

𝑰𝒈𝒉𝟐

𝟏 𝟐𝒈

𝟑 = −

− 𝜹

, 𝝀

 

𝛿

𝜹

𝑰 −

𝟒 = −𝜹𝑬, 𝝀𝟓 = −

𝟐

𝑇 

Decay rate of 𝑇 

0.19 

day  −1 

𝑬

𝒉𝟏 − 𝒈

(𝒉𝟐𝟏𝒈 − 𝒈𝒉𝟐)



𝛾𝐼 

Killing of 𝐼 by 𝑇 

2 × 10−6 

day  −1 

Natural  death  rate  of 

Since  the  four  eigenvalues  show  negative  real  parts  and  no 𝛿𝐼 

5 × 10−5 

day  −1 

infected cells 

imaginary  components.  It  follows  that  fixed  point  (11-15)  are 2𝛽(𝛼+𝜔

2𝛾

2𝜂

𝛽(𝛼+𝜔

stable, 

if 

𝑟 < 2 +

𝐼) + 𝑈𝜙𝐼 + 𝑈𝑔ℎ2 +

𝐼) +

𝑁 

Normalization factor 

1 × 107 

Cells 

𝑟𝛿𝑉

𝑟𝛿𝑇

𝑟(ℎ1−𝑔)

𝛿𝑉

𝛾𝑈𝜙𝐼

𝜂

+ 𝑈𝑔ℎ2. This proposes that the system has a propensity to 𝛿𝐸

ℎ1−𝑔

approach  and  continue  in  this  equilibrium  state  at  given conditions, regardless of its initial point. 



V. 

NUMERICAL SOLUTION 

To  illustrate  the  analytical  results  and  to  gain  further  insight into  the  dynamics  of  system  (1-5),  we  now  carry  out numerical  simulations.  The  model  equations  are  solved  using International Journal of Engineering Works                                                                  Vol. 12, Issue 10, PP. 191-196, October 2025 
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Figure 1: Effect of varying viral clearance rate 𝛿𝑉  on infection outcome.  



Figure  1,  shows  that  increasing  𝛿𝑉  significantly  reduces Figure 3: Time evolution of infected tumor cells  𝐼(𝑡) under viral  persistence,  lowering  infected  cell  levels  and  facilitating baseline parameter values. 

recovery  of  uninfected  cells.  When 𝛿𝑉 is  small,  viral  particles accumulate,  driving  chronic  infection.  This  suggests  that Figure 3, illustrates the infected cell population. Initially, 𝐼 

therapeutic  strategies  targeting  viral  clearance  could  be increases  sharply  as  viral  replication  dominates.  Over  time, effective in reducing infection burden. 

immune  Cells  (  𝑇  )  and  viral  clearance  (  𝛿𝑉  )  reduce  the infected  population.  If  the  immune  response  is  strong,  𝐼 

declines toward elimination; otherwise, it persists, indicating a chronic infection state. 



Figure  2:  Time  evolution  of  uninfected  tumor  cells 𝑈(𝑡) under baseline parameter values. 



Figure 2, shows the dynamics of uninfected tumor cells. At Figure  4:  Effect  of  the  control  factor  𝐼(𝑡)    on  system the  beginning,  𝑈  grows  steadily,  but  once  viral  particles stability. 

become  active,  𝑈  decreases  due  to  infection  and  immune-mediated  killing.  Later,  depending  on  the  strength  of  immune Figure 4, highlights  the role  of the control factor 𝐶, which response  and  viral  clearance, 𝑈 either  stabilizes  at  a  reduced introduces a regulatory feedback through its saturation kinetics level or begins partial recovery. 

(ℎ1, ℎ2) .  When  𝑔  is  large,  𝐶  accumulates  and  suppresses excessive  cell  growth  and  infection  spread.  However,  under low 𝑔 or  strong  saturation  effects, 𝐶 is  insufficient  to  stabilize the  system,  allowing  infection  to  persist.  This  finding underlines  the  potential  role  of  control  mechanisms  in therapeutic interventions. 
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active viral phase, and then level off as natural decay balances stimulation. 

Taken  together,  the  trajectories  demonstrate  the  interplay between viral replication, immune surveillance, and regulatory feedback.  The  model  captures  how  infection  can  initially overwhelm  the  system,  yet  immune  responses  and  control mechanisms act to restore balance over time. 

DISCUSSION 

The  analysis  confirms  that  the  system  is  biologically  well defined:  every  variable  remains  nonnegative  and  bounded, reflecting 

realistic 

biological 

constraints. 

Numerical 

simulations  further  illustrate  how  different  mechanisms contribute to infection control. For instance, the parameter 𝛿𝑉, representing  viral  clearance,  directly  limits  the  persistence  of Figure 5: Dynamics of effector cells $E(t)$ and their impact viral  particles;  when  its  value  increases,  the  viral  population on infection control. 

declines  more  rapidly,  preventing  uncontrolled  growth. 

Similarly,  the  T-cells  related  parameters 𝛾𝑈 and 𝛾𝐼 capture  the Figure 4, the T-cells population increases in response to the immune  system's  ability  to  eliminate  infected  and  uninfected presence of infected cells. A higher T-cells production rate ( 𝜙𝐼 

cells,  respectively.  Simulations  show  that  stronger  immune 

)  enhances  infection  clearance,  reflected  by  reduced  viral  and responses (larger 𝛾𝑈 or 𝛾𝐼 ) suppress infection more efficiently, infected  cell  levels.  Conversely,  when  T-cells  decay  (  𝛿𝑇  ) which aligns with experimental observations in immunology. 

dominates, the immune response becomes insufficient, leading to persistent infection. These results emphasize the importance The  logistic  growth  parameter 𝑟 and  the  carrying  capacity of sustained T-cells activity in longterm infection control. 

𝐾 regulate the population of uninfected cells. In the absence of infection, 𝑈(𝑡) stabilizes  near 𝐾,  but  under  viral  pressure  the balance  shifts,  and  survival  depends  on  how  rapidly  cells  are replenished  compared  to  infection  and  immune  destruction. 

The  chemotherapy 𝐶,  governed  by  the  supply  rate 𝑔 and  the saturation  constants  ℎ1  and  ℎ2 ,  plays  a  stabilizing  role:  it prevents  indefinite  expansion  of  cell  populations  by introducing  regulatory  feedback.  The  simulations  reveal  that saturation  effects  in 𝐶 are  particularly  important,  as  they  can determine  whether  infection  remains  under  control  or  escapes regulation. 

Taken  together,  these  results  emphasize  that  viral persistence  is  not  merely  a  consequence  of  viral  replication  ( 

𝛼, 𝛽 ) but results from a delicate interplay between replication, immune  clearance,  and  regulatory  mechanisms.  The  model thus  provides  a  framework  for  testing  how  changes  in parameter  values,  whether  due  to  natural  variability  or therapeutic interventions, affect long-term infection dynamics. 



Figure 6: Time evolution of viral particles 𝑉(𝑡), uninfected CONCUSLION  

cells  𝑈(𝑡)  infected  cells  𝐼(𝑡) ,  Chemotherapy  𝐶(𝑡) ,  and The  proposed  model  combines  rigorous  analysis  with immune Cells 𝑡(𝑡)  under baseline parameter values. 

numerical exploration to capture the essential features of virus–

cell–immune  interactions.  The  positivity  and  boundedness Figure  6,  illustrates  the  complete  system  dynamics.  The analysis  guarantees  that  the  system  remains  biologically viral  population 𝑉(𝑡) initially  expands,  driving  an  increase  in meaningful, while simulations provide a more detailed picture infected  cells 𝐼(𝑡) while  simultaneously  depleting  uninfected of  how  key  parameters  influence  outcomes.  Strong  immune cells 𝑈(𝑡).  As  infection  progresses,  immune-mediated  effects responses  and  chemotherapy  regulatory  factors  emerge  as and  viral  clearance  reduce  both  𝑉  and  𝐼 ,  permitting  partial decisive in controlling viral spread, whereas weak responses or recovery of 𝑈. 

saturation effects may lead to persistence or chronic infection. 

The chemotherapy 𝐶(𝑡) rises early but stabilizes due to its This  work  contributes  to  the  growing  body  of  research saturation  term,  representing  limited  regulatory  capacity.  T-demonstrating  how  mathematical  models  can  illuminate cells 𝑇(𝑡) increase  in  response  to  infection,  peak  during  the complex biological processes. While the present study captures International Journal of Engineering Works                                                                  Vol. 12, Issue 10, PP. 191-196, October 2025 
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the  main  dynamical  features,  future  extensions  are  necessary. 
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