ISSN E 2409-2770
ISSN P 2521-2419

A Case Study of Bio-char Production from Biomass using Microwave Assisted Pyrolysis and its Utilization

Vol. 5, Issue 5, PP. 87-95, May 2018


Keywords: Biomass, Biochar, Pyrolysis Parameters, Microwave assisted pyrolysis

Download PDF

Microwave pyrolysis is a modern technology to produce a good quality biochar.  Gives best products, utilization and most important, process is environment friendly. In Microwave, radiation use for pyrolysis and process is: fast, specific heat area. But in conventional pyrolysis heat cannot be controlled for specific area. Microwave pyrolysis depends on the parameters: temperature, reaction time, feedstock type and Microwave Absorbers (MWAs). Production depends on the types of pyrolysis (slow, fast and flash). In the previous work focused on bio-oil and gases. But the biochar is storing source of energy and utilization. This review paper provides information about biochar obtained from microwave-assisted pyrolysis in all aspects and its utilization. It is concluded that microwave-assisted technology is an efficient technique to decrease the reaction time and increases the quality of products. In calculation, this method can overcome the requirements of feedstock destroying and improves the quality of heating.

  1. Muhammad Zeshan Afzal: National ASIC System Engineering Center, Southeast University, Nanjing, 210096.
  2. Huiyan Zhang: National ASIC System Engineering Center, Southeast University, Nanjing, 210096,
  3. Muhammad Aurangzeb: College of Energy and Electrical Engineering, Hohai University, Nanjing, 210096.
  4. Wang Bing: National ASIC System Engineering Center, Southeast University, Nanjing, 210096,
  5. Yaping Zhang: National ASIC System Engineering Center, Southeast University, Nanjing, 210096,

Muhammad Zeshan Afzal Huiyan Zhang Muhammad Aurangzeb Wang Bing Yaping Zhang

  1. AFENG, Z., GENXING, P. & LIANQING, L. 2009. Biochar and the effect on C stock enhancement, emission reduction of greenhouse gases and soil reclaimation. Journal of Agro-Environment Science, 28, 2459-2463.
  2. AGBLEVOR, F. & BESLER, S. 1996. Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energy & Fuels, 10, 293-298.
  3. AGBLEVOR, F., BESLER, S. & WISELOGEL, A. 1996. Production of oxygenated fuels from biomass: impact of feedstock storage. Fuel science & technology international, 14, 589-612.
  4. AHMAD, M., RAJAPAKSHA, A. U., LIM, J. E., ZHANG, M., BOLAN, N., MOHAN, D., VITHANAGE, M., LEE, S. S. & OK, Y. S. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
  5. AHUJA, P., SINGH, P., UPADHYAY, S. & KUMAR, S. 1996. Kinetics of biomass and sewage sludge pyrolysis: Thermogravimetric and sealed reactor studies.
  6. ANTAL, M. J., VARHEGYI, G. & JAKAB, E. 1998. Cellulose pyrolysis kinetics: revisited. Industrial & engineering chemistry research, 37, 1267-1275.
  7. ANTUNES, E., JACOB, M. V., BRODIE, G. & SCHNEIDER, P. A. 2017a. Silver removal from aqueous solution by biochar produced from biosolids via microwave pyrolysis. Journal of Environmental Management, 203, 264-272.
  8. ANTUNES, E., SCHUMANN, J., BRODIE, G., JACOB, M. V. & SCHNEIDER, P. A. 2017b. Biochar produced from biosolids using a single-mode microwave: Characterisation and its potential for phosphorus removal. Journal of Environmental Management, 196, 119-126.
  9. AZIZI, K., KESHAVARZ MORAVEJI, M. & ABEDINI NAJAFABADI, H. 2017. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews.
  10. BAHNG, M.-K., MUKARAKATE, C., ROBICHAUD, D. J. & NIMLOS, M. R. 2009. Current technologies for analysis of biomass thermochemical processing: a review. Analytica Chimica Acta, 651, 117-138.
  11. BASSILAKIS, R., CARANGELO, R. & WOJTOWICZ, M. 2001. TG-FTIR analysis of biomass pyrolysis. Fuel, 80, 1765-1786.
  12. BASU, P. 2010. Biomass gasification and pyrolysis: practical design and theory, Academic press.
  13. BENEROSO, D., MONTI, T., KOSTAS, E. T. & ROBINSON, J. Microwave Pyrolysis of Biomass for Bio-oil Production: Scalable Processing Concepts. Chemical Engineering Journal
  14. BENEROSO, D., MONTI, T., KOSTAS, E. T. & ROBINSON, J. 2017. Microwave pyrolysis of biomass for bio-oil production: Scalable processing concepts. Chemical Engineering Journal, 316, 481-498.
  15. BILBA, K. & OUENSANGA, A. 1996. Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. Journal of Analytical and Applied Pyrolysis, 38, 61-73.
  16. BJ�RKMAN, E. & STR�MBERG, B. 1997. Release of chlorine from biomass at pyrolysis and gasification conditions1. Energy & Fuels, 11, 1026-1032.
  17. BRIDGWATER, A. V. 1999. Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis, 51, 3-22.
  18. BRIDGWATER, A. V. & EVANS, G. 1993. An assessment of thermochemical conversion systems for processing biomass and refuse, Energy Technology Support Unit Harwell
  19. BRIDGWATER, A. V. & GRASSI, G. 2012. Biomass pyrolysis liquids upgrading and utilization, Springer Science & Business Media
  20. CHEN, M.-Q., WANG, J., ZHANG, M.-X., CHEN, M.-G., ZHU, X.-F., MIN, F.-F. & TAN, Z.-C. 2008. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis, 82, 145-150.
  21. DI BLASI, C. 1993. Modeling and simulation of combustion processes of charring and non-charring solid fuels. Progress in Energy and Combustion Science, 19, 71-104
  22. DI BLASI, C., BRANCA, C. & D�ERRICO, G. 2000. Degradation characteristics of straw and washed straw. Thermochimica acta, 364, 133-142.
  23. DI BLASI, C., BRANCA, C., SANTORO, A. & HERNANDEZ, E. G. 2001. Pyrolytic behavior and products of some wood varieties. Combustion and Flame, 124, 165-177.
  24. DI BLASI, C., SIGNORELLI, G., DI RUSSO, C. & REA, G. 1999. Product distribution from pyrolysis of wood and agricultural residues. Industrial & Engineering Chemistry Research, 38, 2216-2224.
  25. DOM�NGUEZ, A., MEN�NDEZ, J. A., FERN�NDEZ, Y., PIS, J. J., NABAIS, J. M. V., CARROTT, P. J. M. & CARROTT, M. M. L. R. 2007. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 79, 128-135.
  26. DOM�NGUEZ, A., MEN�NDEZ, J. A., INGUANZO, M. & P�S, J. J. 2006. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresource Technology, 97, 1185-1193.
  27. DONG, X., MA, L. Q. & LI, Y. 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of hazardous materials, 190, 909-915.
  28. DRUMMOND, A.-R. F. & DRUMMOND, I. W. 1996. Pyrolysis of sugar cane bagasse in a wire-mesh reactor. Industrial & Engineering Chemistry Research, 35, 1263-1268.
  29. FARAG, S., FU, D., JESSOP, P. G. & CHAOUKI, J. 2014. Detailed compositional analysis and structural investigation of a bio-oil from microwave pyrolysis of kraft lignin. Journal of Analytical and Applied Pyrolysis, 109, 249-257.
  30. FOWLES, M. 2007. Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy, 31, 426-432.
  31. GARC?A-PEREZ, M., CHAALA, A., YANG, J. & ROY, C. 2001. Co-pyrolysis of sugarcane bagasse with petroleum residue. Part I: thermogravimetric analysis. Fuel, 80, 1245-1258.
  32. GARCIA, L., SALVADOR, M., ARAUZO, J. & BILBAO, R. 1999. Catalytic steam gasification of pine sawdust. Effect of catalyst weight/biomass flow rate and steam/biomass ratios on gas production and composition. Energy & Fuels, 13, 851-859.
  33. GLASER, B., LEHMANN, J., STEINER, C., NEHLS, T., YOUSAF, M. & ZECH, W. Potential of pyrolyzed organic matter in soil amelioration.  12th ISCO Conference�. Beijing, 2002. 421-427.
  34. GOLBER, E. 1985. Black carbon in the environment: properties and distribution. New York, John Wiley.
  35. GUO, X., ZHENG, Y. & ZHOU, B. Influence of absorption medium on microwave pyrolysis of fir sawdust.  Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on, 2008. IEEE, 798-800.
  36. G�TZLOE, A., THUMM, U. & LEWANDOWSKI, I. 2014. Influence of climate parameters and management of permanent grassland on biogas yield and GHG emission substitution potential. Biomass and Bioenergy, 64, 175-189.
  37. HODGSON, E., LEWYS-JAMES, A., RAO RAVELLA, S., THOMAS-JONES, S., PERKINS, W. & GALLAGHER, J. 2016. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks. Bioresource Technology, 214, 574-581.
  38. HOMAGAIN, K., SHAHI, C., LUCKAI, N. & SHARMA, M. 2014. Biochar-based bioenergy and its environmental impact in Northwestern Ontario Canada: A review. Journal of forestry research, 25, 737-748.
  39. WANG, C. Catalytic pyrolysis of plant biomass in a powder-particle fluidized bed.  Fuel and Energy Abstracts, 1996. 31.
  40. HORNE, P. A., NUGRANAD, N. & WILLIAMS, P. T. 1995. Catalytic coprocessing of biomass-derived pyrolysis vapours and methanol. Journal of analytical and applied pyrolysis, 34, 87-108.
  41. HORNUNG, A. 2014. Transformation of Biomass: Theory to Practice, John Wiley & Sons.
  42. HUANG, H.-J., YANG, T., LAI, F.-Y. & WU, G.-Q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. Journal of Analytical and Applied Pyrolysis.
  43. HUANG, X., CAO, J.-P., ZHAO, X.-Y., WANG, J.-X., FAN, X., ZHAO, Y.-P. & WEI, X.-Y. 2016a. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel, 169, 93-98.
  44. HUANG, Y.-F., CHIUEH, P.-T., KUAN, W.-H. & LO, S.-L. 2013a. Microwave pyrolysis of rice straw: Products, mechanism, and kinetics. Bioresource Technology, 142, 620-624.
  45. HUANG, Y. F., KUAN, W. H., LO, S. L. & LIN, C. F. 2008. Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Bioresource Technology, 99, 8252-8258.
  46. INYANG, M., GAO, B., PULLAMMANAPPALLIL, P., DING, W. & ZIMMERMAN, A. R. 2010. Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101, 8868-8872.
  47. IOANNIDOU, O., ZABANIOTOU, A., ANTONAKOU, E., PAPAZISI, K., LAPPAS, A. & ATHANASSIOU, C. 2009. Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renewable and sustainable energy reviews, 13, 750-762.
  48. INTANI, K., LATIF, S., KABIR, A. R. & M�LLER, J. 2016. Effect of self-purging pyrolysis on yield of biochar from maize cobs, husks and leaves. Bioresource Technology, 218, 541-551.
  49. JEFFERY, S., ABALOS, D., SPOKAS, K. A. & VERHEIJEN, F. G. 2015. Biochar effects on crop yield. Biochar for Environmental Management: Science, Technology and Implementation, 2.
  50. JONES, D. A., LELYVELD, T. P., MAVROFIDIS, S. D., KINGMAN, S. W. & MILES, N. J. 2002. Microwave heating applications in environmental engineering�a review. Resources, Conservation and Recycling, 34, 75-90.
  51. KRAMER, C. A., LOLOEE, R., WICHMAN, I. S. & GHOSH, R. N. 2009. Time Resolved Measurements of Pyrolysis Products From Thermoplastic Poly-Methyl-Methacrylate (PMMA). 99-105
  52. LANZETTA, M. & DI BLASI, C. 1998. Pyrolysis kinetics of wheat and corn straw. Journal of Analytical and Applied Pyrolysis, 44, 181-192.
  53. LEHMANN, J. 2007. A handful of carbon. Nature, 447, 143-144.
  54. LEHMANN, J., GAUNT, J. & RONDON, M. 2006. Bio-char sequestration in terrestrial ecosystems�a review. Mitigation and adaptation strategies for global change, 11, 395-419.
  55. LEHMANN, J., PEREIRA DA SILVA, J., STEINER, C., NEHLS, T., ZECH, W. & GLASER, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and soil, 249, 343-357.
  56. LI, J., DAI, J., LIU, G., ZHANG, H., GAO, Z., FU, J., HE, Y. & HUANG, Y. 2016a. Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 94, 228-244..
  57. LIU, P., PTACEK, C. J., BLOWES, D. W. & LANDIS, R. C. 2016. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy. Journal of Hazardous Materials, 308, 233-242.
  58. LIU, Y., LIU, X. & WANG, X. 2014. Double-layer microwave absorber based on CoFe 2 O 4 ferrite and carbonyl iron composites. Journal of Alloys and Compounds, 584, 249-253.
  59. LIU, Z., QUEK, A., HOEKMAN, S. K. & BALASUBRAMANIAN, R. 2013a. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 103, 943-949.
  60. MOHAMED, B. A., ELLIS, N., KIM, C. S., BI, X. & EMAM, A. E.-R. 2016a. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Science of The Total Environment, 566-567, 387-397.
  61. LO, S.-L., HUANG, Y.-F., CHIUEH, P.-T. & KUAN, W.-H. 2017. Microwave Pyrolysis of Lignocellulosic Biomass. Energy Procedia, 105, 41-46.
  62. LUQUE, R., MEN�NDEZ, J. A., ARENILLAS, A. & COT, J. 2012. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? Energy & Environmental Science, 5, 5481-5488.
  63. Miura M, Kaga H, Tanaka S, Takanashi K, Ando K., 2000. Rapid microwave pyrolysis of wood. Journal of Chemical Engineering of Japan 33, 299�302.