In the recent era of technological advancements, it becomes the basic needs of the day that every person wants a better and faster means of communication. Antennas design is of the greater importance to achieve better communication. With the development advances of communication systems in different fields of study such as development in the field of IoTs (internet of things) antenna design becomes the talk of the day. Antenna design also has many complications in its design, structure and working. Researchers are trying to achieve such antenna design which should be simple, easy to use and no complexities in structure. This research study circulates around a design and investigation of a newly designing of circularly polarized (CP) micro-strip antena with a conical pattern of radiations. Major distinctive feature of such design includes single feeding mode, simple design and low profile. The octagon shaped patch can be obtained by two superimposed square patches. Omnidirectional circularly polarized radiation from two superimposed square patches is acquired by generating two mutually perpendicular degenerated TM11 modes. This research study is carried out to understand the fabrication and operation technique of CP micro-strip Patch antenna and the results are obtained. The obtained results shown the linearity with the simulation as well as theoretical results. The antenna is capable to generate conically CP radiation samples with average axial ratio (AR) of value 1.8 dB in azimuthal plane (Ó¨=45ÌŠ). 3-dB AR BW covers GPS L1 band.
Rooh Ullah “A Novel Design of a Circularly Polarized Micro Strip Patch Antenna with Narrowed Radiati International Journal of Engineering Works Vol. 8 Issue 09 PP. 237-243 September 2021 https://doi.org/10.34259/ijew.21.809237243.
[1] C. A. Balanis, Modern antenna handbook. 2007.
[2] N. Tang et al., No Title?????, vol. ? ????, no. ?? ??????. 2018.
[3] T. L. Wu, Y. M. Pan, P. F. Hu, and S. Y. Zheng, “Design of a Low Profile and Compact Omnidirectional Filtering Patch Antenna,” IEEE Access, vol. 5, no. c, pp. 1083–1089, 2017, doi: 10.1109/ACCESS.2017.2651143.
[4] N. Payam, A. Z. Elsherbeni, and F. Yand, “Radiation Analysis Approaches for,” Ieee Antennas Propag. Mag., vol. 55, no. 1, pp. 127–134, 2013.
[5] W. L. Stutzman and W. A. Davis, Antenna Theory. 1999.
[6] N. Hassan, B. H. Ahmad, M. Z. A. A. Aziz, M. S. N. Azizi, M. K. Ismail, and M. F. A. Malek, “Bandwidth enhancement at microstrip patch antenna using modified EC-SRR structures,” EEA - Electroteh. Electron. Autom., vol. 66, no. 1, pp. 140–146, 2018.
[7] S. Liu, J. Tan, and X. Wen, “Dynamic impedance compensation for wireless power transfer using conjugate power,” AIP Adv., vol. 8, no. 2, 2018, doi: 10.1063/1.5012272.
[8] “LIVRO MICROSTRIP ANT DESIG HANDBOOK.pdf.” .
[9] I. Singh and V. S. Tripathi, “Micro strip Patch Antenna and its Applications?: a Survey,” vol. 2, no. 5, pp. 1595–1599, 2011.
[10] N. Nkordeh, F. Idachaba, and I. Bob-manuel, Transactions on Engineering Technologies, no. June. 2020.
[11] U. Chakraborty, S. Chatterjee, S. K. Chowdhury, and P. P. Sarkar, “A comact microstrip patch antenna for wireless communication,” Prog. Electromagn. Res. C, vol. 18, no. October 2010, pp. 211–220, 2011, doi: 10.2528/PIERC10101205.
[12] M. A. Matin and A. I. Sayeed, “A design rule for inset-fed rectangular microstrip patch antenna,” WSEAS Trans. Commun., vol. 9, no. 1, pp. 63–72, 2010.
[13] M. T. Lee, K. M. Luk, E. K. N. Yung, and K. W. Leung, “Microstrip-line feed circularly polarized cylindrical dielectric resonator antenna,” Microw. Opt. Technol. Lett., vol. 24, no. 3, pp. 206–207, 2000, doi: 10.1002/(SICI)1098-2760(20000205)24:3<206::AID-MOP18>3.0.CO;2-C.
[14] Z. Aijaz, “An Introduction of Aperture Coupled Microstrip Slot Antenna,” Int. J. Eng. Sci. Technol., vol. 2, no. 1, pp. 36–39, 2010.
[15] D. Sun and L. You, “A broadband impedance matching method for proximity-coupled microstrip antenna,” IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1392–1397, 2010, doi: 10.1109/TAP.2010.2041312.
[16] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 1617–1655, 2016, doi: 10.1109/COMST.2016.2532458.
[17] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges,” Wirel. Networks, vol. 21, no. 8, pp. 2657–2676, 2015, doi: 10.1007/s11276-015-0942-z.
[18] J. Choi, V. Va, N. González-Prelcic, R. Daniels, C. R. Bhat, and R. W. Heath, “Millimeter-Wave Vehicular Communication to Support Massive Automotive Sensing,” IEEE Commun. Mag., vol. 54, no. 12, pp. 160–167, 2016, doi: 10.1109/MCOM.2016.1600071CM.
[19] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3029–3056, 2015, doi: 10.1109/TCOMM.2015.2434384.
[20] A. Aragón-Zavala, J. L. Cuevas-Ruíz, and J. A. Delgado-Penín, High-Altitude Platforms for Wireless Communications. 2008.
[21] F. Khan, Z. Pi, and S. Rajagopal, “Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication,” 2012 50th Annu. Allert. Conf. Commun. Control. Comput. Allert. 2012, pp. 1517–1523, 2012, doi: 10.1109/Allerton.2012.6483399.
[22] T. Bai and R. W. Heath, “Coverage analysis for millimeter wave cellular networks with blockage effects,” 2013 IEEE Glob. Conf. Signal Inf. Process. Glob. 2013 - Proc., pp. 727–730, 2013, doi: 10.1109/GlobalSIP.2013.6736994.
[23] N. Al-Falahy and O. Y. Alani, “TelecommunicaTions neTworking 5G: Evolution or Revolution?,” no. February 2017, 2017, [Online]. Available: www.itu.int/en/ITU-R/study-groups/rsg5/.
[24] T. L. Marzetta, “Massive MIMO: An introduction,” Bell Labs Tech. J., vol. 20, pp. 11–12, 2015, doi: 10.15325/BLTJ.2015.2407793.
[25] S. Han, C. L. I, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G,” IEEE Commun. Mag., vol. 53, no. 1, pp. 186–194, 2015, doi: 10.1109/MCOM.2015.7010533.
[26] M. Abirami, “A review of patch antenna design for 5G,” Proc. - 2017 IEEE Int. Conf. Electr. Instrum. Commun. Eng. ICEICE 2017, vol. 2017-Decem, pp. 1–3, 2017, doi: 10.1109/ICEICE.2017.8191842.
[27] M. K. Khattak et al., “A flat, broadband and high gain beam-steering antenna for 5G communication,” 2017 Int. Symp. Antennas Propagation, ISAP 2017, vol. 2017-Janua, pp. 1–2, 2017, doi: 10.1109/ISANP.2017.8228856.
[28] S. S. Gao, Q. Luo, and F. Zhu, Circularly polarized antennas. 2013.
[29] B. C. Park and J. H. Lee, “Dual-band omnidirectional circularly polarized antenna utilizing epsilon negative transmission line,” Asia-Pacific Microw. Conf. Proceedings, APMC, vol. 59, no. 7, pp. 82–84, 2012, doi: 10.1109/APMC.2012.6421505.
[30] Y. M. Pan, S. Y. Zheng, and B. J. Hu, “Wideband and low-profile omnidirectional circularly polarized patch antenna,” IEEE Trans. Antennas Propag., vol. 62, no. 8, pp. 4347–4351, 2014, doi: 10.1109/TAP.2014.2323412.
[31] Y. Shi and J. Liu, “Wideband and Low-Profile Omnidirectional Circularly Polarized Antenna With Slits and Shorting-Vias,” IEEE Antennas Wirel. Propag. Lett., vol. 15, no. c, pp. 686–689, 2016, doi: 10.1109/LAWP.2015.2469277.
[32] W. Lin and H. Wong, “Circularly polarized conical-beam antenna with wide bandwidth and low profile,” IEEE Trans. Antennas Propag., vol. 62, no. 12, pp. 5974–5982, 2014, doi: 10.1109/TAP.2014.2360223.
[33] D. I. Wu, “Omnidirectional circularly-polarized conformal microstrip array for telemetry applications,” IEEE Antennas Propag. Soc. AP-S Int. Symp., vol. 2, pp. 998–1001, 1995, doi: 10.1109/aps.1995.530185.
[34] X. L. Quan and R. L. Li, “A broadband omnidirectional circularly polarized antenna,” Tien Tzu Hsueh Pao/Acta Electron. Sin., vol. 42, no. 1, pp. 187–190, 2014, doi: 10.3969/j.issn.0372-2112.2014.01.030.
[35] Y. Yu, J. Xiong, and H. Li, “Compact omni-directional circularly polarised antenna utilising bended dipoles and integrated baluns,” IET Microwaves, Antennas Propag., vol. 11, no. 10, pp. 1409–1414, 2017, doi: 10.1049/iet-map.2016.0947.
[36] K. Nakayama, T. Kawano, and H. Nakano, “A conformal spiral array antenna radiating an omnidirectional circularly-polarized wave,” IEEE Antennas Propag. Soc. Int. Symp. Wirel. Technol. Inf. Networks, APS 1999 - Held conjunction with Usn. Natl. Radio Sci. Meet., vol. 2, pp. 894–897, 1999, doi: 10.1109/APS.1999.789456.
[37] Y. Ma, J. Li, and R. Xu, “Design of an Omnidirectional Circularly Polarized Antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 226–229, 2017, doi: 10.1109/LAWP.2017.2682958.
[38] Y. Liu, X. Li, L. Yang, and Y. Liu, “A Dual-Polarized Dual-Band Antenna with Omni-Directional Radiation Patterns,” IEEE Trans. Antennas Propag., vol. 65, no. 8, pp. 4259–4262, 2017, doi: 10.1109/TAP.2017.2708093.
[39] X. L. Bao and M. J. Ammann, “Differentially-fed microstrip patch antenna for omni-directional GPS applications,” 2013 Loughbrgh. Antennas Propag. Conf. LAPC 2013, vol. 2, no. November, pp. 18–21, 2013, doi: 10.1109/LAPC.2013.6711843.
[40] J. Huang, “Circularly Polarized Conical Patterns from Circular Microstrip Antennas,” IEEE Trans. Antennas Propag., vol. 32, no. 9, pp. 991–994, 1984, doi: 10.1109/TAP.1984.1143455.
[41] K. L. Lau and K. M. Luk, “A wideband circularly polarized conical-beam patch antenna,” IEEE Trans. Antennas Propag., vol. 54, no. 5, pp. 1591–1594, 2006, doi: 10.1109/TAP.2006.874361.
[42] X. Bai, X. Liang, M. Li, B. Zhou, J. Geng, and R. Jin, “Dual-circularly polarized conical-beam microstrip antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 482–485, 2015, doi: 10.1109/LAWP.2014.2369515.
[43] X. Chen, G. Fu, S. X. Gong, Y. L. Yan, and Z. Y. Zhang, “Single-feeding circularly polarized TM21-mode annular-ring microstrip antenna for mobile satellite communication,” Prog. Electromagn. Res. Lett., vol. 20, no. February, pp. 147–156, 2011, doi: 10.2528/PIERL10121601.
[44] A. A. Heidari, M. Heyrani, and M. Nakhkash, “A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications,” Prog. Electromagn. Res., vol. 92, pp. 195–208, 2009, doi: 10.2528/PIER09032401.
[45] T. Khalifa, N. M. Sahar, N. Ramli, and M. T. Islam, “Circularly polarized microstrip patch antenna array for GPS application,” Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 2, pp. 920–926, 2019, doi: 10.11591/ijeecs.v15.i2.pp920-926.
[46] N. Nasimuddin, Z. N. Chen, and X. Qing, “Bandwidth Enhancement of a Single-Feed Circularly Polarized Antenna Using a Metasurface: Metamaterial-based wideband CP rectangular microstrip antenna,” IEEE Antennas Propag. Mag., vol. 58, no. 2, pp. 39–46, 2016, doi: 10.1109/MAP.2016.2520257.
[47] W. K. Lo, C. H. Chan, and K. M. Luk, “Bandwidth enhancement of circularly polarized microstrip patch antenna using multiple L-shaped probe feeds,” Microw. Opt. Technol. Lett., vol. 42, no. 4, pp. 263–265, 2004, doi: 10.1002/mop.20272.
[48] W. K. Lo, J.-L. Hu, C. H. Chan, and K. M. Luk, “L-Shaped Probe-Feed Circularly,” Microw. Opt. Technol. Lett., vol. 25, no. 4, pp. 251–253, 2000.
[49] X. Yang, X. Q. Lin, and B. Wang, “A differential-fed patch antenna with symmetric radiation pattern used for circularly polarized phased array,” 2019 Photonics Electromagn. Res. Symp. - Fall, PIERS - Fall 2019 - Proc., pp. 544–549, 2019, doi: 10.1109/PIERS-Fall48861.2019.9021582.
[50] X. L. Bao and M. J. Ammann, “Comparison of several novel annular-ring microstrip patch antennas for circular polarization,” J. Electromagn. Waves Appl., vol. 20, no. 11, pp. 1427–1438, 2006, doi: 10.1163/156939306779274336.
[51] W. Liao, Q. X. Chu, and S. Du, “Tri-band circularly polarized stacked microstrip antenna for GPS and CNSS applications,” 2010 Int. Conf. Microw. Millim. Wave Technol. ICMMT 2010, pp. 252–255, 2010, doi: 10.1109/ICMMT.2010.5524920.
[52] S. Shekhawat, P. Sekra, D. Bhatnagar, V. K. Saxena, and J. S. Saini, “Stacked arrangement of rectangular microstrip patches for circularly polarized broadband performance,” IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 910–913, 2010, doi: 10.1109/LAWP.2010.2076361.
[53] C. Sun, “A Design of Compact Ultrawideband Circularly Polarized Microstrip Patch Antenna,” IEEE Trans. Antennas Propag., vol. 67, no. 9, pp. 6170–6175, 2019, doi: 10.1109/TAP.2019.2922759.
[54] D. K. Kong, D. Woo, J. Kim, and Y. J. Yoon, “Circularly polarized microstrip Yagi antenna array with tilted beam for improved monopulse characteristics,” Microw. Opt. Technol. Lett., vol. 62, no. 9, pp. 2971–2975, 2020, doi: 10.1002/mop.32413.
[55] R. K. Maurya, B. K. Kanaujia, A. K. Gautam, S. Chatterji, and A. K. Singh, “Circularly polarized hexagonal ring microstrip patch antenna with asymmetrical feed and DGS,” Microw. Opt. Technol. Lett., vol. 62, no. 4, pp. 1702–1708, 2020, doi: 10.1002/mop.32220.
[56] P. Jangir, S. S. Kumar, and M. B. Mahajan, “Circularly polarized microstrip antenna exhibiting conical radiation pattern for GNSS reciever of GEO satellites,” 2019 IEEE Indian Conf. Antennas Propagation, InCAP 2019, pp. 2019–2021, 2019, doi: 10.1109/InCAP47789.2019.9134616.
[57] S. N. Ariffah, W. A. Mustafa, S. Z. S. Idrus, and A. Muhammad, “5.8 GHz Circular Polarized Microstrip Feeding Antenna for Point to Point Communication,” J. Phys. Conf. Ser., vol. 1529, no. 2, 2020, doi: 10.1088/1742-6596/1529/2/022078.
[58] S. Narke, S. Ananthakrishnan, and C. Bhattacharya, “Enhancement of axial ratio-beamwidth of X-band composite microstrip patch antenna with conical ground plane,” Electron. Lett., vol. 56, no. 9, pp. 453–456, 2020, doi: 10.1049/el.2019.3729.
[59] A. S. Griffin, H. Pan, J. D. Barrera, G. H. Huff, S. R. White, and N. R. Sottos, “A polarization reconfigurable microstrip patch antenna using liquid metal microfluidics,” Smart Mater. Struct., vol. 29, no. 4, 2020, doi: 10.1088/1361-665X/ab78b3.
[60] P. Upender and V. Prakasam, “Development of printed circuit Microstrip Patch Antenna with proximity coupled feed at 4 . 3 GHz ( C-band ) with linear polarization for Altimeter Application,” pp. 1–11, 2020.
[61] B. Du and E. K. N. Yung, “A single-feed TM21-mode circular patch antenna with circular polarization,” Microw. Opt. Technol. Lett., vol. 33, no. 3, pp. 154–156, 2002, doi: 10.1002/mop.10262.
[62] Y. Shi and J. Liu, “A Circularly Polarized Octagon-Star-Shaped Microstrip Patch Antenna with Conical Radiation Pattern,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 2073–2078, 2018, doi: 10.1109/TAP.2018.2800801