Muhammad Yawar Khan Afridi, Dr. Syed Waqar Shah
In recent years, wireless communication has played a vital role in making human life easier by rapid response and contactless interaction. 5th Generation of wireless communication will further aid in providing larger bandwidth, lower latency and improved data rate. For this purpose, 3 GHz onwards the frequency band is available to be deployed. Mobile communication happening in the recent past is done via Microstrip patch antenna. In this paper, a review is provided on 5G system of technology and different parameters related to Microstrip Patch Antenna (MPA).
Muhammad Yawar Khan Afridi Dr. Syed Waqar Shah Lu ShaoKun “Advantages of 5G Antenna and its Design” International Journal of Engineering Works Vol. 9 Issue 04 PP. 111-117 April 2022. https://doi.org/10.34259/ijew.22.904111117.
[1] P. Kumar and N. Tiwari, “Turkish Journal of Computer and Mathematics Education Vol . 12 No . 13 ( 2021 ), 1741-1747 Research Article A Review Paper on Microstrip Patch Antenna ( MPA ) for 5G Wireless Technology Turkish Journal of Computer and Mathematics Education Vol . 12 No . 1,” vol. 12, no. 13, pp. 1741–1747, 2021.
[2] W. S. H. M. W. Ahmad et al., “5G Technology: Towards Dynamic Spectrum Sharing Using Cognitive Radio Networks,” IEEE Access, vol. 8, pp. 14460–14488, 2020, doi: 10.1109/ACCESS.2020.2966271.
[3] N. Nguyen-Trong and C. Fumeaux, “Tuning range and efficiency optimization of a frequency-reconfigurable patch antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 1, pp. 150–154, 2018, doi: 10.1109/LAWP.2017.2778272.
[4] D.-G. Fang, Antenna theory and microstrip antennas. CRC Press, 2017.
[5] Z. Lodro, N. Shah, E. Mahar, S. B. Tirmizi, and M. Lodro, “MmWave novel multiband microstrip patch antenna design for 5G communication,” 2019 2nd Int. Conf. Comput. Math. Eng. Technol. iCoMET 2019, pp. 1–4, 2019, doi: 10.1109/ICOMET.2019.8673447.
[6] A. Safaa, “Fo r R,” vol. 33, pp. 2040–2040, 2020.
[7] “Ieee 5G and B Eyond T Echnology R Oadmap,” 2017.
[8] S. M. Tondare, S. D. Panchal, and D. T. Kushnure, “Evolutionary steps from 1G to 4.5G,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 3, no. 4, pp. 6163–6166, 2014, [Online]. Available: www.ijarcce.com.
[9] R. K. Goyal and U. Shankar Modani, “A Compact Microstrip Patch Antenna at 28 GHz for 5G wireless Applications,” 3rd Int. Conf. Work. Recent Adv. Innov. Eng. ICRAIE 2018, vol. 2018, no. November, pp. 1–2, 2018, doi: 10.1109/ICRAIE.2018.8710417.
[10] A. S. Aishah, M. R. C. Beson, S. N. Azemi, and S. A. A. Junid, “60 GHz Milimeter-Wave Antennas for Point-to-Point 5G Communication System,” MATEC Web Conf., vol. 140, 2017, doi: 10.1051/matecconf/201714001006.
[11] S. Mungur, Dheeraj; Duraikannan, “Microstrip Patch Antenna at 28 GHz for 5G Applications,” J. Sci. Technol. Eng. Manag. Res. Innov., vol. 1, no. 1, pp. 20–22, 2018.
[12] A. F. Alsager, “Design and Analysis of Microstrip Patch Antenna Arrays,” Msc. Thesis , Univ. Coll. Boras, Sch. Eng., no. 1, pp. 1–80, 2011.
[13] W. Shahjehan et al., “Universal Filtered Multicarrier for 5G To cite this version?: Universal Filtered Multicarrier for 5G,” 2017.
[14] K. Jain and K. Gupta, “Different Substrates Use in Microstrip Patch Antenna-A Survey,” Int. J. Sci. Res., vol. 3, no. 5, pp. 1802–1803, 2014, [Online]. Available: https://www.ijsr.net/archive/v3i5/MDIwMTMyMTQw.pdf.
[15] W. Shahjehan, I. Hussain, M. I. Khattak, A. Riaz, and N. Iqbal, “Multi-band antenna for 5g applications,” 2019 2nd Int. Conf. Comput. Math. Eng. Technol. iCoMET 2019, pp. 1–6, 2019, doi: 10.1109/ICOMET.2019.8673492.
[16] S. S. Shukla, R. K. Verma, and G. S. Gohir, “Investigation of the effect of substrate material on the performance of microstrip antenna,” 2015 4th Int. Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir. ICRITO 2015, pp. 1–3, 2015, doi: 10.1109/ICRITO.2015.7359350.
[17] W. A. Awan, Halima, A. Zaidi, N. Hussain, S. Khalid, and A. Baghdad, “Characterization of dual band MIMO antenna for 25 GHz and 50 GHz applications,” 2018 Int. Conf. Comput. Electron. Electr. Eng. ICE Cube 2018, pp. 1–4, 2019, doi: 10.1109/ICECUBE.2018.8610982.
[18] M. D. Madhan and D. Subitha, “Millimeter-wave Microstrip Patch Antenna Design for 5G,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 12, pp. 1183–1187, 2019, doi: 10.35940/ijitee.l3896.1081219.
[19] M. Sabir, S. K. Bishnoi, and M. Bhadu, “Design and Simulation of Micro-strip Patch Antenna for 5G Wireless Communications,” vol. 21, no. 9, pp. 523–527, 2019.
[20] S. S. Sarade, S. D. Ruikar, and H. K. Bhaldar, “Design of microstrip patch antenna for 5G application,” Techno-Societal 2018 - Proc. 2nd Int. Conf. Adv. Technol. Soc. Appl., vol. 1 1, pp. 253–261, 2020, doi: 10.1007/978-3-030-16848-3_24.
[21] S. K. Mahto, A. Choubey, and R. Kumar, “A novel compact multi-band double Y-slot microstrip antenna using EBG structure,” Proc. 2015 Int. Conf. Microw. Photonics, ICMAP 2015, vol. 1, pp. 8–9, 2016, doi: 10.1109/ICMAP.2015.7408784.
[22] N. Yoon and C. Seo, “A 28-GHz Wideband 2×2 U-slot patch array antenna,” J. Electromagn. Eng. Sci., vol. 17, no. 3, pp. 133–137, 2017, doi: 10.5515/JKIEES.2017.17.3.133.
[23] J. Saini and S. K. Agarwal, “T and L slotted patch antenna for future mobile and wireless communication,” 8th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2017, pp. 3–7, 2017, doi: 10.1109/ICCCNT.2017.8203922.
[24] M. Abbas et al., “Millimeter Wave Frequency Reconfigurable Antenna for 5G WLAN,” Proc. 21st Int. Multi Top. Conf. INMIC 2018, no. September 2020, 2018, doi: 10.1109/INMIC.2018.8595501.
[25] A. N. D. Ghz, P. Antenna, and M. M. M. Omar, “A Novel Dual-Band (38/60 GHz) Patch Antenna for 5G Mobile Handsets,” 2020.
[26] W. Shahjehan, S. W. Shah, J. Lloret, and A. Leon, “A low rank channel estimation scheme in massive Multiple-input Multiple-Output,” Symmetry (Basel)., vol. 10, no. 10, 2018, doi: 10.3390/sym10100507.
[27] N. Muqarrab, M. I. Khattak, M. R. Zaffar, W. Shahjehan, and Z. Ullah, “Slotted Flexible UWB Antenna,” no. January 2018, 2019.
[28] X. Yang, Y. Liu, Y. X. Xu, and S. X. Gong, “Isolation enhancement in patch antenna array with fractal uc-ebg structure and cross slot,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2175–2178, 2017, doi: 10.1109/LAWP.2017.2703170.
[29] S. Bisht, S. Saini, V. Prakash, and B. Nautiyal, “Study The Various Feeding Techniques of Microstrip Antenna Using Design and Simulation Using CST Microwave Studio,” Int. J. Emerg. Technol. Adv. Eng., vol. 4, no. 9, pp. 318–324, 2014.
[30] J. H. Kim and B. G. Kim, “Effect of feed substrate thickness on the bandwidth and radiation characteristics of an aperture-coupled microstrip antenna with a high permittivity feed substrate,” J. Electromagn. Eng. Sci., vol. 18, no. 2, pp. 101–107, 2018, doi: 10.26866/jees.2018.18.2.101.
[31] H. Tian, C. Liu, and X. Gu, “Proximity?coupled feed patch antenna array for 79 GHz automotive radar,” J. Eng., vol. 2019, no. 19, pp. 6244–6246, 2019, doi: 10.1049/joe.2019.0262.
[32] “VSWR vs . Returned Power cheat sheet,” p. 75.
[33] J. Colaco and R. Lohani, “Design and Implementation of Microstrip Patch Antenna for 5G applications,” no. June, pp. 682–685, 2020, doi: 10.1109/icces48766.2020.9137921.
[34] S. K. Routray, P. Mishra, S. Sarkar, A. Javali, and S. Ramnath, “Communication bandwidth for emerging networks: Trends and prospects,” arXiv, 2019.
[35] A. Mahabub, M. M. Rahman, M. Al-Amin, M. S. Rahman, and M. M. Rana, “Design of a Multiband Patch Antenna for 5G Communication Systems,” Open J. Antennas Propag., vol. 06, no. 01, pp. 1–14, 2018, doi: 10.4236/ojapr.2018.61001.
[36] W. Krouka, F. Sarrazin, J. Sol, P. Besnier, and E. Richalot, “Comparison of Antenna Radiation Efficiency Measurement Techniques in Reverberation Chamber Using or Not a Reference Antenna,” 14th Eur. Conf. Antennas Propagation, EuCAP 2020, 2020, doi: 10.23919/EuCAP48036.2020.9135507.
[37] S. Sharma, C. C. Tripathi, and R. Rishi, “Impedance Matching Techniques for Microstrip Patch Antenna,” Indian J. Sci. Technol., vol. 10, no. 28, pp. 1–16, 2017, doi: 10.17485/ijst/2017/v10i28/97642.
[38] W. Shahjehan, S. W. Shah, J. Lloret, and I. Bosch, “A novel codeword selection scheme for MIMO-MAC lower-bound maximization,” Entropy, vol. 20, no. 8, 2018, doi: 10.3390/e20080546.
[39] N. O. Parchin, Y. I. A. Al-Yasir, H. J. Basherlou, and R. A. Abd-Alhameed, “A closely spaced dual-band MIMO patch antenna with reduced mutual coupling for 4G/5G applications,” Prog. Electromagn. Res. C, vol. 101, no. January, pp. 71–80, 2020, doi: 10.2528/pierc20013001.
[40] P. M. Sunthari and R. Veeramani, “for 5G Wireless Applications Using Mimo Techniques,” no. L, pp. 4–8, 2017.
[41] L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems,” IEEE Internet Things J., vol. 7, no. 1, pp. 16–32, 2020, doi: 10.1109/JIOT.2019.2948888.
[42] C. Sexton, Q. Bodinier, A. Farhang, N. Marchetti, F. Bader, and L. A. DaSilva, “Enabling Asynchronous Machine-Type D2D Communication Using Multiple Waveforms in 5G,” IEEE Internet Things J., vol. 5, no. 2, pp. 1307–1322, 2018, doi: 10.1109/JIOT.2018.2806184.
[43] F. Altaf et al., “ICI Suppression in OFDM Systems for LTE Farhan Altaf , Syed Shah „ Waleed Shahjehan , Haseeb Khan To cite this version?: HAL Id?: hal-01598979 ICI Suppression in OFDM Systems for LTE,” 2017.
[44] G. Kiziltas, D. Psychoudakis, J. L. Volakis, and N. Kikuchi, “Topology Design Optimization of Dielectric Substrates for Bandwidth Improvement of a Patch Antenna,” IEEE Trans. Antennas Propag., vol. 51, no. 10 I, pp. 2732–2743, 2003, doi: 10.1109/TAP.2003.817539.
[45] M. Lamsalli, A. El Hamichi, M. Boussouis, N. A. Touhami, and T. E. Elhamadi, “Genetic algorithm optimization for microstrip patch antenna miniaturization,” Prog. Electromagn. Res. Lett., vol. 60, no. April, pp. 113–120, 2016, doi: 10.2528/PIERL16041907.
[46] M. T. Islam, N. Misran, T. C. Take, and M. Moniruzzaman, “Optimization of microstrip patch antenna using particle swarm optimization with curve fitting,” Proc. 2009 Int. Conf. Electr. Eng. Informatics, ICEEI 2009, vol. 2, no. August, pp. 711–714, 2009, doi: 10.1109/ICEEI.2009.5254724.
[47] W. Shahjehan et al., “Evaluation of IPV6 and MOFI IOT To cite this version?: HAL Id?: hal-01583840 Evaluation of IPV6 and MOFI IOT,” 2017.
[48] A. Kumar and A. P. Singh, “Design and optimization of slotted micro-machined patch antenna using composite substrate,” Appl. Comput. Electromagn. Soc. J., vol. 34, no. 1, pp. 128–134, 2019.
[49] A. D. Boursianis et al., “Multiband Patch Antenna Design Using Nature-Inspired Optimization Method,” IEEE Open J. Antennas Propag., vol. 2, no. January, pp. 151–162, 2021, doi: 10.1109/OJAP.2020.3048495.
[50] B. ur Rehman et al., “Joint user grouping and power control using whale optimization algorithm for NOMA uplink systems,” PeerJ Comput. Sci., vol. 8, p. e882, 2022, doi: 10.7717/peerj-cs.882.
[51] P. P. Chandran and S. Viswasom, “Gain and bandwidth optimization of a novel microstrip patch antenna,” Proc. - 2014 4th Int. Conf. Adv. Comput. Commun. ICACC 2014, no. 1, pp. 315–318, 2014, doi: 10.1109/ICACC.2014.80.
[52] F. Mohamadi Monavar and N. Komjani, “Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach,” Prog. Electromagn. Res., vol. 121, no. October, pp. 103–120, 2011, doi: 10.2528/pier11051305.
[53] D. Imran et al., “Millimeter wave microstrip patch antenna for 5G mobile communication,” 2018 Int. Conf. Eng. Emerg. Technol. ICEET 2018, vol. 2018-Janua, no. April, pp. 1–6, 2018, doi: 10.1109/ICEET1.2018.8338623.
[54] N. Hussain, M. J. Jeong, A. Abbas, T. J. Kim, and N. Kim, “A metasurface-based low-profile wideband circularly polarized patch antenna for 5G millimeter-wave systems,” IEEE Access, vol. 8, pp. 22127–22135, 2020, doi: 10.1109/ACCESS.2020.2969964.
[55] Y. Jandi, F. Gharnati, and A. Oulad Said, “Design of a compact dual bands patch antenna for 5G applications,” 2017 Int. Conf. Wirel. Technol. Embed. Intell. Syst. WITS 2017, pp. 5–8, 2017, doi: 10.1109/WITS.2017.7934628.
[56] N. O. Parchin, R. A. Abd-Alhameed, and M. Shen, “Frequency-Switchable Patch Antenna with Parasitic Ring Load for 5G Mobile Terminals,” 2019 Int. Symp. Antennas Propagation, ISAP 2019 - Proc., vol. 3, pp. 7–9, 2019.
[57] A. Riaz, M. K. Shereen, S. Ullah, W. Shahjehan, and A. Rashid, “Design and sar analysis of a compact multiband handset antenna for umts/HSPA+2100 MHz and 2.4 GHz ISM-Band standards for cellular applications,” 5th Int. Multi-Topic ICT Conf. Technol. Futur. Gener. IMTIC 2018 - Proc., no. April, pp. 1–8, 2018, doi: 10.1109/IMTIC.2018.8467267.
[58] P. Ramanujam, C. Arumugam, R. Venkatesan, and M. Ponnusamy, “Design of compact patch antenna with enhanced gain and bandwidth for 5G mm-wave applications,” IET Microwaves, Antennas Propag., vol. 14, no. 12, pp. 1455–1461, 2020, doi: 10.1049/iet-map.2019.0891.
[59] W. Shahjehan et al., “Efficient modulation scheme for intermediate relay-aided IoT networks,” Appl. Sci., vol. 10, no. 6, 2020, doi: 10.3390/app10062126.
[60] Y. Shi, Q. Han, W. Shen, and H. Zhang, “Potential applications of 5G communication technologies in collaborative intelligent manufacturing,” IET Collab. Intell. Manuf., vol. 1, no. 4, pp. 109–116, 2019, doi: 10.1049/IET-CIM.2019.0007.