M. Mustafa Azeem, Irfan Jamil
, Muhammad Bilal Khan
Currently, state-of-the-art reactors concept is based upon higher efficiency and better utilization of nuclear power. This energy is considered an alternate source replacing conventional methods. The materials used in nuclear power plants (NPP) suffer long term degradation due to radiation exposure and corrosive environments. This concerns the safety and reliability of NPP. The choice of material to sustain extreme conditions is crucial for developing safe and reliable systems. There are several candidate materials for advanced-generation reactors, out of which nano-dispersed oxides based have shown higher radiation stability at extreme irradiation conditions. This is due uniformly distributed nano oxides in the matrix having interfaces which make them a gutter for defects. The radiation damage is multiscale which requires integrated simulation and experimental techniques to understand and explain temporal/length scales for simulating the macroscopic nature of materials. For better visualization, it is necessary to have integrated multi-scale modeling and experimental approaches for explaining the associated mechanisms at atomic scales associated with dispersed oxides. This short review will summarize the current development state and modeling radiation damage studies to understand irradiation response of oxide-dispersed strengthened steels (ODS).
M. Mustafa Azeem Yun Di Irfan Jamil Muhammad Bilal Khan “Multiscale Modeling of Radiation Damage in Oxide Dispersed Strengthened Steel Alloys: A Perspec International Journal of Engineering Works Vol. 9 Issue 12 PP. 193-201 December 2022. https://doi.org/10.34259/ijew.22.912193201.
[1] G. Mehdi, N. Ali, S. Hussain, A. A. Zaidi, A. Hussain Shah, and M. M. Azeem, “Design and fabrication of automatic single axis solar tracker for solar panel,” 2019, doi: 10.1109/ICOMET.2019.8673496.
[2] B. Raj, “Materials Science and Technology?: Research and Challenges in Nuclear Fission Power,” in Proc Indian Natn Sci Acad 81, 2015, no. 4, pp. 801–826, doi: 10.16943/ptinsa/2015/v81i4/48298.
[3] M. Mustafa Azeem, Z. Li, Q. Wang, and M. Zubair, “Molecular dynamics studies and irradiation effects in ODSS alloys,” Int. J. Nucl. Energy Sci. Technol., vol. 12, no. 4, pp. 380–399, 2018, doi: 10.1504/IJNEST.2018.097200.
[4] P. Yvon and F. Carré, “Structural materials challenges for advanced reactor systems,” J. Nucl. Mater., vol. 385, no. 2, pp. 217–222, 2009, doi: 10.1016/j.jnucmat.2008.11.026.
[5] P. Yvon, Structural materials for Generation IV nuclear reactors. 2016.
[6] A. M. Mustafa, Eltayeb Yousif, Zhang Zhijian, Tian Zhao-fe, “A Simulation of Small Break Loss of Coolant Accident (SB-LOCA) in AP1000 Nuclear Power Plant Using RELAP5-MV,” 25th Int. Conf. Nucl. Eng., vol. 5, pp. 1–5, 2017, doi: 10.1115/ICONE25-67469.
[7] O. M. H. Ahmed, F. I. Habbani, A. M. Mustafa, E. M. A. Mohamed, A. M. Salih, and F. Seedig, “Quality Assessment Statistic Evaluation of X-Ray Fluorescence via NIST and IAEA Standard Reference Materials,” World J. Nucl. Sci. Technol., vol. 07, no. 02, pp. 121–128, 2017, doi: 10.4236/wjnst.2017.72010.
[8] A. K. D. Willie, H. Zhao, M. Mustafa Azeem, and T. Svetlana, “Analysis of Burnup effects and Its Integrity Assessment in the Interim of Irradiation with Molecular Dynamics,” MRS Adv., vol. 5, no. 33–34, pp. 1799–1810, 2020, doi: 10.1557/adv.2020.19.
[9] M. M. Azeem, Z. Li, Q. Wang, and M. Zubair, “Molecular dynamics studies and irradiation effects in ODSS alloys,” Int. J. Nucl. Energy Sci. Technol., vol. 12, no. 4, pp. 381–399, 2018, doi: 10.1504/IJNEST.2018.10018247.
[10] M. M. Azeem, Q. Wang, Z. Li, and Y. Zhang, “Dislocation-oxide interaction in Y2O3 embedded Fe: A molecular dynamics simulation study,” Nucl. Eng. Technol., vol. 52, no. 2, pp. 337–343, 2020, doi: 10.1016/j.net.2019.07.011.
[11] M. M. Azeem, Z. Li, Q. Wang, Q. M. N. Amjad, M. Zubair, and O. M. H. Ahmed, “Classical molecular dynamics study for defect sink behavior in oxide dispersed strengthened alloys,” in Proceedings of 2018 15th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2018, 2018, pp. 12–15, doi: 10.1109/IBCAST.2018.8312177.
[12] M. Mustafa Azeem, K. Abd El Gawad, M. Zubair, S. A. Ibrahim, M. Ado, and G. Mehdi, “Radiation damage effects in oxide dispersion strengthened steel alloys,” in International Conference on Nuclear Engineering, Proceedings, ICONE, 2019, vol. 2019-May, doi: 10.1299/jsmeicone.2019.27.2086.
[13] T. K. Kim et al., “Current Status and Future Prospective of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel (ARROS) Development for Nuclear Reactor System Applications,” Nucl. Eng. Technol., vol. 48, no. 2, pp. 572–594, 2016, doi: 10.1016/j.net.2015.12.005.
[14] J. Z. Peng Zhang , Boyang Xu, “Fabrication of Oxide?Dispersion?Strengthened Ferritic Alloys by Mechanical.pdf,” Steel Res. Int. -, vol. 93, no. 2200109, pp. 1–9, 2022.
[15] S. A. Ibrahim, Q. Wang, M. Ado, M. Mustafa Azeem, and Z. Abbati, “Irradiation effects of Fe-Cr alloys,” in International Conference on Nuclear Engineering, Proceedings, ICONE, 2019, vol. 2, doi: 10.1299/jsmeicone.2019.27.1201.
[16] S. A. Ibrahim, Q. Wang, Y. Zhang, M. Ado, G. D. Chung, and M. M. Azeem, “Molecular dynamics simulation of strengthening dependence on precipitate Cr composition in Fe-15at.%Cr alloy,” Micron, vol. 131, p. 102823, 2020, doi: 10.1016/j.micron.2020.102823.
[17] A. Ullah, Q. Wang, Y. Song, M. M. Azeem, M. Ado, and M. Sohail, “Continuous Stiffness Measurements and Nanoindentation Studies of bcc Mo: An Atomistic Approach,” Trans. Indian Inst. Met., vol. 75, no. 6, pp. 1555–1561, 2022, doi: 10.1007/s12666-022-02524-6.
[18] A. Ullah, W. Qingyu, M. Ado, M. M. Azeem, and A. Shah, “Effect of Concentration of Mo on the Mechanical behavior of ? UMo: an Atomistic Study,” Pet. Chem. Ind. Int., vol. 4, no. 3, pp. 67–71, 2021, doi: 10.33140/pcii.04.03.05.
[19] M. M. Azeem, D. Yun, and M. Zubair, “Atomic Insights on Interaction Mechanism of Dislocation With Void/Impurity/Precipitates in BCC Iron,” Aug. 2021, doi: 10.1115/ICONE28-65197.
[20] M. M. Azeem, Q. Wang, and M. Zubair, “Atomistic simulations of nanoindentation response of irradiation defects in iron,” Sains Malaysiana, vol. 48, no. 9, pp. 2029–2039, 2019, doi: 10.17576/jsm-2019-4809-24.
[21] M. V Rodríguez and P. J. Ficalora, “The mechanism of a hydrogen-dislocation interaction in b.c.c. metals: Embrittlement and dislocation motion,” Materials Science and Engineering, vol. 85. pp. 43–52, 1987, doi: https://doi.org/10.1016/0025-5416(87)90465-4.
[22] I. L. Pioro, Handbook of Generation IV Nuclear Reactors. 2016.
[23] F. Cattant, D. Crusset, and D. Féron, “Corrosion issues in nuclear industry today,” Mater. Today, vol. 11, no. 10, pp. 32–37, 2008, doi: 10.1016/S1369-7021(08)70205-0.
[24] D. Buckthorpe, “Material challenges for the next generation of fission reactor systems,” 9th Liege Conference:Materials for advanced power enginerring. pp. 906–921, 2010.
[25] S. J. Zinkle and J. T. Busby, “Structural materials for fission & fusion energy,” Materials Today, vol. 12, no. 11. pp. 12–19, 2009, doi: 10.1016/S1369-7021(09)70294-9.
[26] S. Ukai and M. Fujiwara, “Perspective of ODS alloys application in nuclear environments,” J. Nucl. Mater., vol. 307–311, no. 1 SUPPL., pp. 749–757, 2002, doi: 10.1016/S0022-3115(02)01043-7.
[27] J. Marian et al., “Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions,” Nucl. Fusion, vol. 57, no. 9, 2017, doi: 10.1088/1741-4326/aa5e8d.
[28] B. Raj, M. Vijayalakshmi, P. R. V. Rao, and K. B. S. Rao, “Challenges in Materials Research for Sustainable Nuclear Energy,” MRS Bull., vol. 33, no. 04, pp. 327–337, 2008, doi: 10.1557/mrs2008.67.
[29] T. Allen, J. Busby, M. Meyer, and D. Petti, “Materials challenges for nuclear systems,” Mater. Today, vol. 13, no. 12, pp. 14–23, 2010, doi: 10.1016/S1369-7021(10)70220-0.
[30] W. Akhtar, M. M. Azeem, M. B. Khan, and M. Science, “Atomistic Insights into the Irradiation Effects in Molybdenum,” Int. J. Eng. Work., vol. 9, no. 12, pp. 187–192, 2022.
[31] S. J. Zinkle, K. A. Terrani, J. C. Gehin, L. J. Ott, and L. L. Snead, “Accident tolerant fuels for LWRs: A perspective,” J. Nucl. Mater., vol. 448, no. 1–3, pp. 374–379, 2014, doi: 10.1016/j.jnucmat.2013.12.005.
[32] A. M. Mustafa, Z. Li, and L. Shao, “Molecular Dynamics Simulations of Damage Cascades Creation in Oxide-Particle-Embedded Fe.,” in 25th International Conference on Nuclear Engineering,ASME, 2017, vol. 5, pp. 1–5, doi: 10.1115/ICONE25-67356.
[33] M. M. Azeem, D. Yun, and M. Zubair, “Atomic insights on interaction mechanism of dislocation with void/impurity/ precipitates in bcc iron,” Int. Conf. Nucl. Eng. Proceedings, ICONE, vol. 2, pp. 1–7, 2021, doi: 10.1115/ICONE28-65197