In this paper we study the one–sided Hausdorff distance between the shifted Heaviside function and some generic growth function such as Turner–Bradley–Kirk–Pruitt function. Numerical examples are presented using CAS MATHEMATICA
- Nikolay Kyurkchiev, nkyurk@math.bas.bg, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 8, 1113 Sofia, Bulgaria
- Anton Iliev, aii@uni-plovdiv.bg, Faculty of Mathematics and Informatics, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
Nikolay Kyurkchiev and Anton Iliev
- Shoffner, S. Schnell, Estimation of the lag time in a subsequent monomer addition model for fibril elongation, bioRxiv The preprint server for biology (2015), 1–8, doi:10.1101/034900
- P. Arosio, T. P. J. Knowles, S. Linse, On the lag phase in amyloid fibril formation, Physical Chemistry Chemical Physics 17 (2015) 7606–7618, doi:10.1039/C4CP05563B
- N. Kyurkchiev, A note on the new geometric representation for the parameters in the fibril elongation process, Compt. rend. Acad. bulg. Sci. 69 (8) (2016) 963–972.
- S. Markov, Building reaction kinetic models for amyloid fibril growth, BIOMATH 5 2016, doi:10.11145/j.biomath.2016.07.311
- N. Kyurkchiev, S. Markov, Approximation of the cut function by some generic logistic functions and applications, Advances in Applied Sciences (2016) (accepted).
- J. A. Nelder, The fitting of a generalization of the logistic curve, Biometrics 17 (1961) 89–110.
- M. Turner, B. Blumenstein, J. Sebaugh, A Generalization of the Logistic Law of Growth, Biometrics 25 (3) (1969) 577–580.
- F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea 2005), ISBN: 978–0–821– 83835–8.
- B. Sendov, Hausdorff Approximations (Kluwer, Boston, 1990), doi:10.1007/978-94-009-0673-0
- R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions and Approximations, In: M. Nehmeier et al. (Eds), Scientific Computing, Computer Arithmetic, and Validated Numerics, 16th International Symposium, SCAN 2014, LNCS 9553 (2016) 3–13, Springer, doi:10.1007/978-3-319-31769-4
- M. Turner, E. Bradley, K. Kirk, K. Pruitt, A theory of growth, Math. Biosci. 29 (1976) 367–373.
- P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance mathematique et physique 10 (1838) 113–121.
- A. Tsoularis, Analysis of logistic growth models, Les. Lett. Inf. Math. Sci. 2 (2001) 23–46.
-
N. Kyurkchiev, S. Markov, On the Hausdorff distance between theHeaviside step function and Verhulst logistic function, J. Math. Chem.54(1) (2016) 109–119, doi:10.1007/S10910-015-0552-0
- N. Kyurkchiev, S. Markov, Sigmoidal functions: some computational and modelling aspects, Biomath Communications 1 (2) (2014) 30–48; doi:10.11145/j.bmc.2015.03.081.
- A. Iliev, N. Kyurkchiev, S. Markov, On the approximation of the cut and step functions by logistic and Gompertz functions, Biomath 4 (2) (2015) 2–13.
- N. Kyurkchiev, S. Markov, On the approximation of the generalized cut.
- A. Iliev, N. Kyurkchiev, S. Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation (2015), doi:10.1016/j.matcom.2015.11.005
- N. Kyurkchiev, A. Iliev, On some growth curve modeling: approximation theory and applications, Int. J. of Trends in Research and Development, 3(3) (2016) 466–471.
- N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN: 978-3-659-76045-7.
- N. Kyurkchiev, A. Iliev, A note on some growth curves arising from Box-Cox transformation, Int. J. of Engineering Works 3(6) (2016) 47– 51.
- N. Kyurkchiev, S. Markov, A. Iliev, A note on the Schnute growth model, Int. J. of Engineering Research and Development 12(6) (2016) 47–54.
- A. Iliev, N. Kyurkchiev, S. Markov, On the Hausdorff distance between the shifted Heaviside step function and the transmuted Stannard growth function, BIOMATH (2016) (accepted).
- N. Kyurkchiev, On the Approximation of the step function by some cumulative distribution functions, Compt. rend. Acad. bulg. Sci. 68(12) (2015) 1475–1482
- V. Kyurkchiev, N. Kyurkchiev, On the Approximation of the Step function by Raised-Cosine and Laplace Cumulative Distribution Functions, European International Journal of Science and Technology 4(9) (2016) 75–84.
- A. Iliev, N. Kyurkchiev, S. Markov, Approximation of the Cut Function by Stannard and Richard Sigmoid Functions, International Journal of Pure and Applied Mathematics 109(1) (2016) 119–128.
- A. Blumberg, Logistic Growth Rate Functions, Journal of Theoretical Biology 21 (1968) 42–44.
- B. Gompertz, On the nature of the function expressive of the law of human mortality, Philosophical Transactions 27 (1825) 513–519.
- R. Pearl, The growth of populations, Quarterly Review of Biology 2 (1927) 532–548.